The complexity of determining the rainbow vertex-connection of a graph
نویسندگان
چکیده
A vertex-colored graph is rainbow vertex-connected if any two vertices are connected by a path whose internal vertices have distinct colors, which was introduced by Krivelevich and Yuster. The rainbow vertex-connection of a connected graph G, denoted by rvc(G), is the smallest number of colors that are needed in order to make G rainbow vertex-connected. In this paper, we study the computational complexity of vertex-rainbow connection of graphs and prove that computing rvc(G) is NP-Hard. Moreover, we show that it is already NP-Complete to decide whether rvc(G) = 2. We also prove that the following problem is NP-Complete: given a vertex-colored graph G, check whether the given coloring makes G rainbow vertexconnected.
منابع مشابه
Some Results on the Maximal 2-Rainbow Domination Number in Graphs
A 2-rainbow dominating function ( ) of a graph is a function from the vertex set to the set of all subsets of the set such that for any vertex with the condition is fulfilled, where is the open neighborhood of . A maximal 2-rainbow dominating function on a graph is a 2-rainbow dominating function such that the set is not a dominating set of . The weight of a maximal is the value . ...
متن کاملOn the Complexity of Rainbow Coloring Problems
An edge-colored graph G is said to be rainbow connected if between each pair of vertices there exists a path which uses each color at most once. The rainbow connection number, denoted by rc(G), is the minimum number of colors needed to make G rainbow connected. Along with its variants, which consider vertex colorings and/or so-called strong colorings, the rainbow connection number has been stud...
متن کاملRainbow connections for planar graphs and line graphs
An edge-colored graph G is rainbow connected if any two vertices are connected by a path whose edges have distinct colors. The rainbow connection number of a connected graph G, denoted by rc(G), is the smallest number of colors that are needed in order to make G rainbow connected. It was proved that computing rc(G) is an NP-Hard problem, as well as that even deciding whether a graph has rc(G) =...
متن کاملComputing Minimum Rainbow and Strong Rainbow Colorings of Block Graphs
A path in an edge-colored graph G is rainbow if no two edges of it are colored the same. The graph G is rainbow-connected if there is a rainbow path between every pair of vertices. If there is a rainbow shortest path between every pair of vertices, the graph G is strongly rainbow-connected. The minimum number of colors needed to make G rainbow-connected is known as the rainbow connection number...
متن کاملComplexity of Rainbow Vertex Connectivity Problems for Restricted Graph Classes
A path in a vertex-colored graph G is vertex rainbow if all of its internal vertices have a distinct color. The graph G is said to be rainbow vertex connected if there is a vertex rainbow path between every pair of its vertices. Similarly, the graph G is strongly rainbow vertex connected if there is a shortest path which is vertex rainbow between every pair of its vertices. We consider the comp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Theor. Comput. Sci.
دوره 412 شماره
صفحات -
تاریخ انتشار 2011